Independent sets in tensor graph powers
نویسندگان
چکیده
The tensor product of two graphs, G and H, has a vertex set V (G) × V (H) and an edge between (u, v) and (u′, v′) iff both uu′ ∈ E(G) and vv′ ∈ E(H). Let A(G) denote the limit of the independence ratios of tensor powers of G, limα(G)/|V (G)|. This parameter was introduced in [5], where it was shown that A(G) is lower bounded by the vertex expansion ratio of independent sets of G. In this note we study the relation between these parameters further, and ask whether they are in fact equal. We present several families of graphs where equality holds, and discuss the effect the above question has on various open problems related to tensor graph products.
منابع مشابه
Measure preserving homomorphisms and independent sets in tensor graph powers
In this note, we study the behavior of independent sets of maximum probability measure in tensor graph powers. To do this, we introduce an upper bound using measure preserving homomorphisms. This work extends some previous results about independence ratios of tensor graph powers.
متن کاملIndependent sets of maximal size in tensor powers of vertex-transitive graphs
Let G be a connected, non-bipartite vertex-transitive graph. We prove that if the only independent sets of maximal cardinality in the tensor product G×G are the preimages of the independent sets of maximal cardinality in G under projections, then the same holds for all finite tensor powers of G, thus providing an affirmative answer to a question raised by Larose and Tardif [8].
متن کاملINDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE RINGS
Let $G=(V,E)$ be a simple graph. A set $Ssubseteq V$ isindependent set of $G$, if no two vertices of $S$ are adjacent.The independence number $alpha(G)$ is the size of a maximumindependent set in the graph. In this paper we study and characterize the independent sets ofthe zero-divisor graph $Gamma(R)$ and ideal-based zero-divisor graph $Gamma_I(R)$of a commutative ring $R$.
متن کاملDomination number of graph fractional powers
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
متن کاملMaximal Independent Sets for the Pixel Expansion of Graph Access Structure
Abstract : A visual cryptography scheme based on a given graph G is a method to distribute a secret image among the vertices of G, the participants, so that a subset of participants can recover the secret image if they contain an edge of G, by stacking their shares, otherwise they can obtain no information regarding the secret image. In this paper a maximal independent sets of the graph G was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 54 شماره
صفحات -
تاریخ انتشار 2007